Data Science at Home
Episodes

Tuesday Apr 23, 2019
Episode 57: Neural networks with infinite layers
Tuesday Apr 23, 2019
Tuesday Apr 23, 2019
How are differential equations related to neural networks? What are the benefits of re-thinking neural network as a differential equation engine? In this episode we explain all this and we provide some material that is worth learning. Enjoy the show!
Residual Block
References
[1] K. He, et al., “Deep Residual Learning for Image Recognition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778, 2016
[2] S. Hochreiter, et al., “Long short-term memory”, Neural Computation 9(8), pages 1735-1780, 1997.
[3] Q. Liao, et al.,”Bridging the gaps between residual learning, recurrent neural networks and visual cortex”, arXiv preprint, arXiv:1604.03640, 2016.
[4] Y. Lu, et al., “Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equation”, Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, 2018.
[5] T. Q. Chen, et al., ” Neural Ordinary Differential Equations”, Advances in Neural Information Processing Systems 31, pages 6571-6583}, 2018

Tuesday Apr 16, 2019
Episode 56: The graph network
Tuesday Apr 16, 2019
Tuesday Apr 16, 2019
Since the beginning of AI in the 1950s and until the 1980s, symbolic AI approaches have dominated the field. These approaches, also known as expert systems, used mathematical symbols to represent objects and the relationship between them, in order to depict the extensive knowledge bases built by humans. The opposite of the symbolic AI paradigm is named connectionism, which is behind the machine learning approaches of today

Tuesday Apr 09, 2019
Episode 55: Beyond deep learning
Tuesday Apr 09, 2019
Tuesday Apr 09, 2019
The successes that deep learning systems have achieved in the last decade in all kinds of domains are unquestionable. Self-driving cars, skin cancer diagnostics, movie and song recommendations, language translation, automatic video surveillance, digital assistants represent just a few examples of the ongoing revolution that affects or is going to disrupt soon our everyday life.But all that glitters is not gold…Read the full post on the Amethix Technologies blog

Saturday Mar 09, 2019
Episode 54: Reproducible machine learning
Saturday Mar 09, 2019
Saturday Mar 09, 2019
In this episode I speak about how important reproducible machine learning pipelines are. When you are collaborating with diverse teams, several tasks will be distributed among different individuals. Everyone will have good reasons to change parts of your pipeline, leading to confusion and definitely a number of options that soon explode. In all those cases, tracking data and code is extremely helpful to build models that are reproducible anytime, anywhere. Listen to the podcast and learn how.
![Episode 52: why do machine learning models fail? [RB]](https://pbcdn1.podbean.com/imglogo/ep-logo/pbblog1799802/logo_squared_datascience_v3_300x300.png)
Thursday Jan 17, 2019
Episode 52: why do machine learning models fail? [RB]
Thursday Jan 17, 2019
Thursday Jan 17, 2019
The success of a machine learning model depends on several factors and events. True generalization to data that the model has never seen before is more a chimera than a reality. But under specific conditions a well trained machine learning model can generalize well and perform with testing accuracy that is similar to the one performed during training.
In this episode I explain when and why machine learning models fail from training to testing datasets.

Wednesday Dec 19, 2018
Episode 49: The promises of Artificial Intelligence
Wednesday Dec 19, 2018
Wednesday Dec 19, 2018
It's always good to put in perspective all the findings in AI, in order to clear some of the most common misunderstandings and promises. In this episode I make a list of some of the most misleading statements about what artificial intelligence can achieve in the near future.

Sunday Oct 21, 2018
Episode 48: Coffee, Machine Learning and Blockchain
Sunday Oct 21, 2018
Sunday Oct 21, 2018
In this episode - which I advise to consume at night, in a quite place - I speak about private machine learning and blockchain, while I sip a cup of coffee in my home office.There are several reasons why I believe we should start thinking about private machine learning...It doesn't really matter what approach becomes successful and gets adopted, as long as it makes private machine learning possible. If people own their data, they should also own the by-product of such data.
Decentralized machine learning makes this scenario possible.
![Episode 47: Are you ready for AI winter? [Rebroadcast]](https://pbcdn1.podbean.com/imglogo/ep-logo/pbblog1799802/logo_squared_datascience_v3_300x300.png)
Tuesday Sep 11, 2018
Episode 47: Are you ready for AI winter? [Rebroadcast]
Tuesday Sep 11, 2018
Tuesday Sep 11, 2018
Today I am having a conversation with Filip Piękniewski, researcher working on computer vision and AI at Koh Young Research America. His adventure with AI started in the 90s and since then a long list of experiences at the intersection of computer science and physics, led him to the conclusion that deep learning might not be sufficient nor appropriate to solve the problem of intelligence, specifically artificial intelligence. I read some of his publications and got familiar with some of his ideas. Honestly, I have been attracted by the fact that Filip does not buy the hype around AI and deep learning in particular. He doesn’t seem to share the vision of folks like Elon Musk who claimed that we are going to see an exponential improvement in self driving cars among other things (he actually said that before a Tesla drove over a pedestrian).

Tuesday Sep 04, 2018
Episode 46: why do machine learning models fail? (Part 2)
Tuesday Sep 04, 2018
Tuesday Sep 04, 2018
In this episode I continue the conversation from the previous one, about failing machine learning models.
When data scientists have access to the distributions of training and testing datasets it becomes relatively easy to assess if a model will perform equally on both datasets. What happens with private datasets, where no access to the data can be granted?
At fitchain we might have an answer to this fundamental problem.

Tuesday Aug 28, 2018
Episode 45: why do machine learning models fail?
Tuesday Aug 28, 2018
Tuesday Aug 28, 2018
The success of a machine learning model depends on several factors and events. True generalization to data that the model has never seen before is more a chimera than a reality. But under specific conditions a well trained machine learning model can generalize well and perform with testing accuracy that is similar to the one performed during training.
In this episode I explain when and why machine learning models fail from training to testing datasets.