About this Show
Data Science at Home is a podcast about machine learning, artificial intelligence and algorithms.
The show is hosted by Dr. Francesco Gadaleta on solo episodes and interviews with some of the most influential figures in the field
Technology, AI, machine learning and algorithms. Come join the discussion on Discord! https://discord.gg/4UNKGf3
Tuesday Sep 17, 2019
Tuesday Sep 17, 2019
Tuesday Sep 17, 2019
Join the discussion on our Discord server
Training neural networks faster usually involves the usage of powerful GPUs. In this episode I explain an interesting method from a group of researchers from Google Brain, who can train neural networks faster by squeezing the hardware to their needs and making the training pipeline more dense.
Enjoy the show!
References
Faster Neural Network Training with Data Echoinghttps://arxiv.org/abs/1907.05550
Friday Sep 06, 2019
Friday Sep 06, 2019
Friday Sep 06, 2019
Join the discussion on our Discord server
In this episode I explain how a research group from the University of Lubeck dominated the curse of dimensionality for the generation of large medical images with GANs. The problem is not as trivial as it seems. Many researchers have failed in generating large images with GANs before. One interesting application of such approach is in medicine for the generation of CT and X-ray images.Enjoy the show!
References
Multi-scale GANs for Memory-efficient Generation of High Resolution Medical Images https://arxiv.org/abs/1907.01376
Thursday Aug 29, 2019
Thursday Aug 29, 2019
Thursday Aug 29, 2019
In this episode I am with Jadiel de Armas, senior software engineer at Disney and author of Videflow, a Python framework that facilitates the quick development of complex video analysis applications and other series-processing based applications in a multiprocessing environment.
I have inspected the videoflow repo on Github and some of the capabilities of this framework and I must say that it’s really interesting. Jadiel is going to tell us a lot more than what you can read from Github
References
Videflow Github official repository https://github.com/videoflow/videoflow
Tuesday Aug 27, 2019
Tuesday Aug 27, 2019
Tuesday Aug 27, 2019
In this episode, I am with Dr. Charles Martin from Calculation Consulting a machine learning and data science consulting company based in San Francisco. We speak about the nuts and bolts of deep neural networks and some impressive findings about the way they work.
The questions that Charles answers in the show are essentially two:
Why is regularisation in deep learning seemingly quite different than regularisation in other areas on ML?
How can we dominate DNN in a theoretically principled way?
References
The WeightWatcher tool for predicting the accuracy of Deep Neural Networks https://github.com/CalculatedContent/WeightWatcher
Slack channel https://weightwatcherai.slack.com/
Dr. Charles Martin Blog http://calculatedcontent.com and channel https://www.youtube.com/c/calculationconsulting
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning - Charles H. Martin, Michael W. Mahoney
Wednesday Aug 21, 2019
Wednesday Aug 21, 2019
Wednesday Aug 21, 2019
In this episode I explain how a community detection algorithm known as Markov clustering can be constructed by combining simple concepts like random walks, graphs, similarity matrix. Moreover, I highlight how one can build a similarity graph and then run a community detection algorithm on such graph to find clusters in tabular data.
You can find a simple hands-on code snippet to play with on the Amethix Blog
Enjoy the show!
References
[1] S. Fortunato, “Community detection in graphs”, Physics Reports, volume 486, issues 3-5, pages 75-174, February 2010.
[2] Z. Yang, et al., “A Comparative Analysis of Community Detection Algorithms on Artificial Networks”, Scientific Reports volume 6, Article number: 30750 (2016)
[3] S. Dongen, “A cluster algorithm for graphs”, Technical Report, CWI (Centre for Mathematics and Computer Science) Amsterdam, The Netherlands, 2000.
[4] A. J. Enright, et al., “An efficient algorithm for large-scale detection of protein families”, Nucleic Acids Research, volume 30, issue 7, pages 1575-1584, 2002.
Wednesday Aug 14, 2019
Wednesday Aug 14, 2019
Wednesday Aug 14, 2019
The two most widely considered software development models in modern project management are, without any doubt, the Waterfall Methodology and the Agile Methodology. In this episode I make a comparison between the two and explain what I believe is the best choice for your machine learning project.
An interesting post to read (mentioned in the episode) is How businesses can scale Artificial Intelligence & Machine Learning https://amethix.com/how-businesses-can-scale-artificial-intelligence-machine-learning/
Tuesday Aug 06, 2019
Tuesday Aug 06, 2019
Tuesday Aug 06, 2019
Training neural networks faster usually involves the usage of powerful GPUs. In this episode I explain an interesting method from a group of researchers from Google Brain, who can train neural networks faster by squeezing the hardware to their needs and making the training pipeline more dense.
Enjoy the show!
References
Faster Neural Network Training with Data Echoinghttps://arxiv.org/abs/1907.05550
Tuesday Jul 23, 2019
Tuesday Jul 23, 2019
Tuesday Jul 23, 2019
In this episode, I am with Dr. Charles Martin from Calculation Consulting a machine learning and data science consulting company based in San Francisco. We speak about the nuts and bolts of deep neural networks and some impressive findings about the way they work.
The questions that Charles answers in the show are essentially two:
Why is regularisation in deep learning seemingly quite different than regularisation in other areas on ML?
How can we dominate DNN in a theoretically principled way?
References
The WeightWatcher tool for predicting the accuracy of Deep Neural Networks https://github.com/CalculatedContent/WeightWatcher
Slack channel https://weightwatcherai.slack.com/
Dr. Charles Martin Blog http://calculatedcontent.com and channel https://www.youtube.com/c/calculationconsulting
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning - Charles H. Martin, Michael W. Mahoney
Tuesday Jul 16, 2019
Tuesday Jul 16, 2019
Tuesday Jul 16, 2019
In this episode I am with Jadiel de Armas, senior software engineer at Disney and author of Videflow, a Python framework that facilitates the quick development of complex video analysis applications and other series-processing based applications in a multiprocessing environment.
I have inspected the videoflow repo on Github and some of the capabilities of this framework and I must say that it’s really interesting. Jadiel is going to tell us a lot more than what you can read from Github
References
Videflow Github official repository https://github.com/videoflow/videoflow
Tuesday Jul 09, 2019
Tuesday Jul 09, 2019
Tuesday Jul 09, 2019
In this episode I have a wonderful conversation with Chris Skinner.
Chris and I recently got in touch at The banking scene 2019, fintech conference recently held in Brussels. During that conference he talked as a real trouble maker - that’s how he defines himself - saying that “People are not educated with loans, credit, money” and that “Banks are failing at digital”.
After I got my hands on his last book Digital Human, I invited him to the show to ask him a few questions about innovation, regulation and technology in finance.
Data Science at Home is the top-10 best data science podcasts on Apple Podcasts, Spotify, Stitcher, Podbean and many more aggregators.
We reach our audience on a weekly basis via 30-minute episodes enriched with blog posts and show notes. Our episodes reach a highly targeted audience across a wide demographics and globally distributed.
Data Science at home currently accepts at most two advertising slots per episode. The scheduled episode for your advertising campaign will be defined by our team, depending on the topic and the current advertising queue.
Our team is available to give you recommendations about your application and to discuss rates. Please send a direct email to media@amethix.com to make first contact. After connecting, we will share the best available date for you to proceed with the onboarding.
We promote services and products related to IT, Internet services, Research, Data Science, Machine learning, Fintech and Banking, Healthcare, Energy, etc. Below are some of the most recent statistics of the show.
Contact us and let’s talk about how we can help get your message to the audience of Data Science at Home podcast.
Data Science at Home is a podcast about machine learning, artificial intelligence and algorithms.
The show is hosted by Dr. Francesco Gadaleta on solo episodes and interviews with some of the most influential figures in the field