Archive for the 'GAN' Category

In this episode I speak with Adam Leon Smith, CTO at DragonFly and expert in testing strategies for software and machine learning.


On September 15th there will be a live@Manning Rust conference. In one Rust-full day you will attend many talks about what's special about rust, building high performance web services or video game, about web assembly and much more.
If you want to meet the tribe, tune in september 15th to the live@manning rust conference.



Read Full Post »

The hype around GPT-3 is alarming and gives and provides us with the awful picture of people misunderstanding artificial intelligence. In response to some comments that claim GPT-3 will take developers' jobs, in this episode I express some personal opinions about the state of AI in generating source code (and in particular GPT-3).


If you have comments about this episode or just want to chat, come join us on the official Discord channel.



This episode is supported by Amethix Technologies.

Amethix works to create and maximize the impact of the world’s leading corporations, startups, and nonprofits, so they can create a better future for everyone they serve. They are a consulting firm focused on data science, machine learning, and artificial intelligence.

Read Full Post »

Generative Adversarial Networks or GANs are very powerful tools to generate data. However, training a GAN is not easy. More specifically, GANs suffer of three major issues such as instability of the training procedure, mode collapse and vanishing gradients.


In this episode I not only explain the most challenging issues one would encounter while designing and training Generative Adversarial Networks. But also some methods and architectures to mitigate them. In addition I elucidate the three specific strategies that researchers are considering to improve the accuracy and the reliability of GANs.


The most tedious issues of GANs


Convergence to equilibrium


A typical GAN is formed by at least two networks: a generator G and a discriminator D. The generator's task is to generate samples from random noise. In turn, the discriminator has to learn to distinguish fake samples from real ones. While it is theoretically possible that generators and discriminators converge to a Nash Equilibrium (at which both networks are in their optimal state), reaching such equilibrium is not easy. 


Vanishing gradients


Moreover, a very accurate discriminator would push the loss function towards lower and lower values. This in turn, might cause the gradient to vanish and the entire network to stop learning completely. 


Mode collapse


Another phenomenon that is easy to observe when dealing with GANs is mode collapse. That is the incapability of the model to generate diverse samples. This in turn, leads to generated data that are more and more similar to the previous ones. Hence, the entire generated dataset would be just concentrated around a particular statistical value. 


The solution


Researchers have taken into consideration several approaches to overcome such issues. They have been playing with architectural changes, different loss functions and game theory.


Listen to the full episode to know more about the most effective strategies to build GANs that are reliable and robust.
Don't forget to join the conversation on our new Discord channel. See you there!


Read Full Post »

Join the discussion on our Discord server

In this episode I explain how a research group from the University of Lubeck dominated the curse of dimensionality for the generation of large medical images with GANs.
The problem is not as trivial as it seems. Many researchers have failed in generating large images with GANs before. One interesting application of such approach is in medicine for the generation of CT and X-ray images.
Enjoy the show!



Multi-scale GANs for Memory-efficient Generation of High Resolution Medical Images

Read Full Post »

Podbean App

Play this podcast on Podbean App