Archive for the 'Deep Learning' Category

In this episode I speak with Adam Leon Smith, CTO at DragonFly and expert in testing strategies for software and machine learning.
We cover testing with deep learning (neuron coverage, threshold coverage, sign change coverage, layer coverage, etc.), combinatorial testing and their practical aspects.

On September 15th there will be a live@Manning Rust conference. In one Rust-full day you will attend many talks about what's special about rust, building high performance web services or video game, about web assembly and much more.
If you want to meet the tribe, tune in september 15th to the live@manning rust conference.

 

 

Read Full Post »

In this episode I speak with Adam Leon Smith, CTO at DragonFly and expert in testing strategies for software and machine learning.

 

On September 15th there will be a live@Manning Rust conference. In one Rust-full day you will attend many talks about what's special about rust, building high performance web services or video game, about web assembly and much more.
If you want to meet the tribe, tune in september 15th to the live@manning rust conference.

 

 

Read Full Post »

After deep learning, a new entry is about ready to go on stage. The usual journalists are warming up their keyboards for blogs, news feeds, tweets, in one word, hype.
This time it's all about privacy and data confidentiality. The new words, homomorphic encryption.

 

Join and chat with us on the official Discord channel.

 

Sponsors

This episode is supported by Amethix Technologies.

Amethix works to create and maximize the impact of the world’s leading corporations, startups, and nonprofits, so they can create a better future for everyone they serve. They are a consulting firm focused on data science, machine learning, and artificial intelligence.

 

References

Towards a Homomorphic Machine Learning Big Data Pipeline for the Financial Services Sector

IBM Fully Homomorphic Encryption Toolkit for Linux

Read Full Post »

The hype around GPT-3 is alarming and gives and provides us with the awful picture of people misunderstanding artificial intelligence. In response to some comments that claim GPT-3 will take developers' jobs, in this episode I express some personal opinions about the state of AI in generating source code (and in particular GPT-3).

 

If you have comments about this episode or just want to chat, come join us on the official Discord channel.

 

 

This episode is supported by Amethix Technologies.

Amethix works to create and maximize the impact of the world’s leading corporations, startups, and nonprofits, so they can create a better future for everyone they serve. They are a consulting firm focused on data science, machine learning, and artificial intelligence.

Read Full Post »

There is definitely room for improvement in the family of algorithms of stochastic gradient descent. In this episode I explain a relatively simple method that has shown to improve on the Adam optimizer. But, watch out! This approach does not generalize well.

Join our Discord channel and chat with us.

 

References

 

Read Full Post »

In this episode I speak with Filip Piekniewski about some of the most worth noting findings in AI and machine learning in 2019. As a matter of fact, the entire field of AI has been inflated by hype and claims that are hard to believe. A lot of the promises made a few years ago have revealed quite hard to achieve, if not impossible. Let's stay grounded and realistic on the potential of this amazing field of research, not to bring disillusion in the near future.

Join us to our Discord channel to discuss your favorite episode and propose new ones.

 

This episode is brought to you by Protonmail

Click on the link in the description or go to protonmail.com/datascience and get 20% off their annual subscription.

Read Full Post »

In this episode I make a non exhaustive list of machine learning tools and frameworks, written in Rust. Not all of them are mature enough for production environments. I believe that community effort can change this very quickly.

To make a comparison with the Python ecosystem I will cover frameworks for linear algebra (numpy), dataframes (pandas), off-the-shelf machine learning (scikit-learn), deep learning (tensorflow) and reinforcement learning (openAI).

Rust is the language of the future.
Happy coding!
 

Reference

  1. BLAS linear algebra https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
  2. Rust dataframe https://github.com/nevi-me/rust-dataframe
  3. Rustlearn https://github.com/maciejkula/rustlearn
  4. Rusty machine https://github.com/AtheMathmo/rusty-machine
  5. Tensorflow bindings https://lib.rs/crates/tensorflow
  6. Juice (machine learning for hackers) https://lib.rs/crates/juice
  7. Rust reinforcement learning https://lib.rs/crates/rsrl

Read Full Post »

As a continuation of the previous episode in this one I cover the topic about compressing deep learning models and explain another simple yet fantastic approach that can lead to much smaller models that still perform as good as the original one.

Don't forget to join our Slack channel and discuss previous episodes or propose new ones.

This episode is supported by Pryml.io
Pryml is an enterprise-scale platform to synthesise data and deploy applications built on that data back to a production environment.

 

References

Comparing Rewinding and Fine-tuning in Neural Network Pruning
https://arxiv.org/abs/2003.02389

 

Read Full Post »

Using large deep learning models on limited hardware or edge devices is definitely prohibitive. There are methods to compress large models by orders of magnitude and maintain similar accuracy during inference.

In this episode I explain one of the first methods: knowledge distillation

 Come join us on Slack

Reference

Read Full Post »

In this episode I briefly explain the concept behind activation functions in deep learning. One of the most widely used activation function is the rectified linear unit (ReLU). 
While there are several flavors of ReLU in the literature, in this episode I speak about a very interesting approach that keeps computational complexity low while improving performance quite consistently.

This episode is supported by pryml.io. At pryml we let companies share confidential data. Visit our website.

Don't forget to join us on discord channel to propose new episode or discuss the previous ones. 

References

Dynamic ReLU https://arxiv.org/abs/2003.10027

Read Full Post »

One of the best features of neural networks and machine learning models is to memorize patterns from training data and apply those to unseen observations. That's where the magic is. 
However, there are scenarios in which the same machine learning models learn patterns so well such that they can disclose some of the data they have been trained on. This phenomenon goes under the name of unintended memorization and it is extremely dangerous.

Think about a language generator that discloses the passwords, the credit card numbers and the social security numbers of the records it has been trained on. Or more generally, think about a synthetic data generator that can disclose the training data it is trying to protect. 

In this episode I explain why unintended memorization is a real problem in machine learning. Except for differentially private training there is no other way to mitigate such a problem in realistic conditions.
At Pryml we are very aware of this. Which is why we have been developing a synthetic data generation technology that is not affected by such an issue.

 

This episode is supported by Harmonizely
Harmonizely lets you build your own unique scheduling page based on your availability so you can start scheduling meetings in just a couple minutes.
Get started by connecting your online calendar and configuring your meeting preferences.
Then, start sharing your scheduling page with your invitees!

 

References

The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini

Read Full Post »

Why so much silence? Building a company! That's why :) 
I am building pryml, a platform that allows data scientists build their applications on data they cannot get access to. 
This is the first of a series of episodes in which I will speak about the technology and the challenges we are facing while we build it. 

Happy listening and stay tuned!

Read Full Post »

In the last episode of 2019 I speak with Filip Piekniewski about some of the most worth noting findings in AI and machine learning in 2019. As a matter of fact, the entire field of AI has been inflated by hype and claims that are hard to believe. A lot of the promises made a few years ago have revealed quite hard to achieve, if not impossible. Let's stay grounded and realistic on the potential of this amazing field of research, not to bring disillusion in the near future.

Join us to our Discord channel to discuss your favorite episode and propose new ones. 
I would like to thank all of you for supporting and inspiring us. I wish you a wonderful 2020!

Francesco and the team of Data Science at Home

Read Full Post »

Some of the most powerful NLP models like BERT and GPT-2 have one thing in common: they all use the transformer architecture.
Such architecture is built on top of another important concept already known to the community: self-attention.
In this episode I explain what these mechanisms are, how they work and why they are so powerful.

Don't forget to subscribe to our Newsletter or join the discussion on our Discord server

 

References

Read Full Post »

Generative Adversarial Networks or GANs are very powerful tools to generate data. However, training a GAN is not easy. More specifically, GANs suffer of three major issues such as instability of the training procedure, mode collapse and vanishing gradients.

 

In this episode I not only explain the most challenging issues one would encounter while designing and training Generative Adversarial Networks. But also some methods and architectures to mitigate them. In addition I elucidate the three specific strategies that researchers are considering to improve the accuracy and the reliability of GANs.

 

The most tedious issues of GANs

 

Convergence to equilibrium

 

A typical GAN is formed by at least two networks: a generator G and a discriminator D. The generator's task is to generate samples from random noise. In turn, the discriminator has to learn to distinguish fake samples from real ones. While it is theoretically possible that generators and discriminators converge to a Nash Equilibrium (at which both networks are in their optimal state), reaching such equilibrium is not easy. 

 

Vanishing gradients

 

Moreover, a very accurate discriminator would push the loss function towards lower and lower values. This in turn, might cause the gradient to vanish and the entire network to stop learning completely. 

 

Mode collapse

 

Another phenomenon that is easy to observe when dealing with GANs is mode collapse. That is the incapability of the model to generate diverse samples. This in turn, leads to generated data that are more and more similar to the previous ones. Hence, the entire generated dataset would be just concentrated around a particular statistical value. 

 

The solution

 

Researchers have taken into consideration several approaches to overcome such issues. They have been playing with architectural changes, different loss functions and game theory.

 

Listen to the full episode to know more about the most effective strategies to build GANs that are reliable and robust.
Don't forget to join the conversation on our new Discord channel. See you there!

 

Read Full Post »

Play this podcast on Podbean App