Archive for January 2019

Have you ever wanted to get an estimate of the uncertainty of your neural network? Clearly Bayesian modelling provides a solid framework to estimate uncertainty by design. However, there are many realistic cases in which Bayesian sampling is not really an option and ensemble models can play a role.

In this episode I describe a simple yet effective way to estimate uncertainty, without changing your neural network’s architecture nor your machine learning pipeline at all.

The post with mathematical background and sample source code is published here.

Read Full Post »

The success of a machine learning model depends on several factors and events. True generalization to data that the model has never seen before is more a chimera than a reality. But under specific conditions a well trained machine learning model can generalize well and perform with testing accuracy that is similar to the one performed during training.

In this episode I explain when and why machine learning models fail from training to testing datasets.

Read Full Post »

In this episode I am completing the explanation about the integration fitchain-oceanprotocol that allows secure on-premise compute to operate in the decentralized data marketplace designed by Ocean Protocol.

As mentioned in the show, this is a picture that provides a 10000-feet view of the integration.



I hope you enjoy the show!

Read Full Post »

Podbean App

Play this podcast on Podbean App